國立中興大學 100 學年度碩士班招生考試試題

科目:生物化學 系	所:植物病理學系乙組
	本科目試題共3頁
單選題 (30%) (每題2分,答錯倒扣0.5分)	
1. What is the approximate charge difference between glutA) 0B) 1/2C) 1D) 11/2E)	
 2. By adding SDS (sodium dodecyl sulfate) during the elect A) determine a protein's isoelectric point. B) determine the amino acid composition of the protei D) preserve a protein's native structure and biological E) separate proteins exclusively on the basis of molection 	ermine an enzyme's specific activity. n. activity.
3. Which of the following parts of the IgG molecule are noA) Fab B) Fc C) Heavy chain D) Light chain	-
 4. An α helix would be destabilized most by: A) an electric dipole spanning several peptide bonds t B) interactions between neighboring Asp and Arg resi C) interactions between two adjacent hydrophobic Va D) the presence of an Arg residue near the carboxyl te E) the presence of two Lys residues near the amino te 	idues. I residues. erminus of the α helix.
 5. A sequence of amino acids in a certain protein is found to probably part of a(n): A) antiparallel β sheet. B) parallel β sheet. C) α here 	
 6. How is trypsinogen converted to trypsin? A) A protein kinase-catalyzed phosphorylation conver B) An increase in Ca²⁺ concentration promotes the con C) Proteolysis of trypsinogen forms trypsin. D) Trypsinogen dimers bind an allosteric modulator, comonomers. E) Two inactive trypsinogen dimers pair to form an active trypsinogen dimers pair to form active trypsinogen dimers pair to form	nversion. AMP, causing dissociation into active trypsin
7. Which of the following is <i>not</i> a reducing sugar?A) Fructose B) Glucose C) Glyceraldehyde	D) Ribose E) Sucrose
	ched through the amino acid residues: glutamate. C) glutamine or arginine. aspartate, or cysteine.
· ·	grade foreign DNA that enters a bacterium. strict the damage to DNA by ultraviolet light.
10. In the laboratory, recombinant plasmids are commonlyA) electrophoresis: a gentle low-voltage gradient dravB) infection with a bacteriophage that carries the plasmids	vs the DNA into the cell.
· · · · · · · · · · · · · · · · · · ·	

國立中興大學100學年度碩士班招生考試試題

科目:生物化學

系所:植物病理學系乙組

 C) microinjection. D) mixing plasmids with an extract of broken cells. E) transformation: heat shock of the cells incubated with plasmid DNA in the presence of CaCl₂. 		
 Ubiquitin is a: A) component of the electron transport system. B) protease. C) protein kinase. D) protein phosphorylase. E) protein that tags another protein for proteolysis. 		
 12. Glucose labeled with ¹⁴C in C-1 and C-6 gives rise in glycolysis to pyruvate labeled in: A) all three carbons. B) A and C. C) its carbonyl carbon. D) its carboxyl carbon. E) its methyl carbon. 		
 3. Which of these cofactors participates directly in most of the oxidation-reduction reactions in the fermentation of glucose to lactate? A) ADP B) ATP C) FAD/FADH₂ D) Glyceraldehyde 3-phosphate E) NAD⁺/NADH 		
 4. What is the correct order of function of the following enzymes of β-oxidation? (1) β-Hydroxyacyl-CoA dehydrogenase (2) Thiolase (3) Enoyl-CoA hydratase (4) Acyl-CoA dehydrogenase 		
A) 1, 2, 3, 4 B) 3, 1, 4, 2 C) 4, 3, 1, 2 D) 1, 4, 3, 2 E) 4, 2, 3, 1		
 15. If the 16-carbon saturated fatty acid palmitate is oxidized completely to carbon dioxide and water (via the β-oxidation pathway and the citric acid cycle), and all of the energy-conserving products are used to drive ATP synthesis in the mitochondrion, the net yield of ATP per molecule of palmitate is: A) 3. B) 10. C) 25. D) 108. E) 1,000. 		
問答及簡答 (52%): 1. A given mRNA sequence might be translated in any of three reading frames. Describe how prokaryotes and eukaryotes determine the correct reading frame. (8%)		
 Describe the role of the following components in bacterial protein synthesis.(8%) (a) Initiation factor 2 (IF-2) (b) fMet-tRNA^{fMet} (c) N¹⁰-formyltetrahydrofolate (d) tRNA^{fMet} 		
 All known DNA polymerases catalyze synthesis only in the 5' →3' direction. Nevertheless, during semiconservative DNA replication in the cell, they are able to catalyze the synthesis of both daughter chains, which would appear to require synthesis in the 3' →5' direction. Explain the process that occurs in the cell that allows for synthesis of both daughter chains by DNA polymerase. (6%) 		
4. Briefly describe DNA repair by base-excision repair pathway (8%)		
5. Describe briefly the processing of tRNAs in bacteria and eukaryotic (10%)		
6. What is yeast artificial chromosome (YAC)? How is it used? (6%)		
7. Describe how the transcription of <i>E. coli trp</i> operon is regulated. (6%)		
第 2 頁		

國立中興大學 100 學年度碩士班招生考試試題

科目:生物化學

(

系所:植物病理學系乙組

	本科目試題共3頁
解釋名詞 (18%)	
1. scfv	
2. RNA interference	
3. monoclonal antibodies	
4. site-directed mutagenesis	
5. suppressors of gene silencing	
6. ribozyme	
7. DNA mobility shift assay	
8. RT-PCR	
9. alternative splicing	